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Acrylamide (ACR) has demonstrable neurotoxic effects in animals and humans that stem from its
chemical behavior as a soft electrophilic R,�-unsaturated carbonyl compound. Evidence is presented
that the nerve terminal is a primary site of ACR action and that inhibition of neurotransmission mediates
the development of neurological deficits. At the mechanistic level, recent proteomic, neurochemical,
and kinetic data are considered, which suggest that ACR inhibits neurotransmission by disrupting
presynaptic nitric oxide (NO) signaling. Nerve-terminal damage likely mediates the neurological
complications that accompany the occupational exposure of humans to ACR. In addition, the proposed
molecular mechanism of synaptotoxicity has substantial implications for the pathogenesis of
Alzheimer’s disease and other neurodegenerative conditions that involve neuronal oxidative stress
and the secondary endogenous generation of acrolein and other conjugated carbonyl chemicals.
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INTRODUCTION

Acrylamide (ACR) is used in a variety of industrial settings
(e.g., water and wastewater management, cosmetic manufactur-
ing, ore processing, and dye synthesis) and in scientific
laboratories for the electrophoretic separation of macromole-
cules (1–4). In addition to occupational sources of exposure
(Table 1), ACR is also present in cigarettes and is a significant
food contaminant formed during the high-temperature prepara-
tion of certain potato- or grain-based products, for example,
French fries, crackers, and bread (5). Although the precise
chemistry has not been conclusively identified, it appears that
the generation of ACR in certain food involves the formation
of pyrolytic asparagine fragments, which is facilitated by the
concomitant pyrolysis of Maillard-active dicarbonyl and hy-
droxycarbonyl precursors (6, 7). ACR is a well-documented
neurotoxicant in both humans and laboratory animals. Sub-
chronic, low-level occupational exposure of humans (Table 1)
to ACR produces neurotoxicity characterized by ataxia, skeletal
muscle weakness, and numbness of the hands and feet (3, 8–10).
Daily exposure of laboratory animals to ACR is associated with
progressive neurological signs that resemble the neurotoxicity
occurring in humans, that is, ataxia and skeletal muscle
weakness (4, 11–13). On the basis of a subchronic (90 day
exposure) study of peripheral nerve damage in rats (39), a no

observable adverse effect level (NOAEL) of 0.2 mg/kg/day has
been established. Early morphological studies suggested that
both human and experimental neurotoxicities were mediated by
cerebellar Purkinje cell injury and by degeneration of distal
axons in the PNS and CNS (4, 14–17). In addition to
neurotoxicity, there is considerable experimental data from
rodent studies that ACR produces reproductive toxicity, for
example, reduced litter size, DNA strand breaks, and dominant
lethal mutations (18–20). Furthermore, chronic (0.1-2.0 mg/
kg/day × 2 years) rodent studies revealed an increased incidence
of ACR-induced tumors in certain tissues, for example, mam-
mary gland fibroadenomas in female rats and tunica vaginalis
mesotheliomas in male rats (21–24). To date, however, epide-
miological studies of occupationally exposed human cohorts
have failed to establish a relationship between ACR exposure
and an increased risk for cancer (25–31). Nonetheless, given
the limited detectibility of subtle cancer risks inherent to human
epidemiological research and significant evidence of carcino-
genicity in experimental animals, ACR is considered to be a
potential human carcinogen (IARC V.39, 1986; IARC S.7,
1987). Thus, ACR exposure is associated with neurotoxicity,
carcinogenicity, and reproductive toxicity in laboratory species,
whereas in humans, neurotoxicity is currently the only demon-
strated effect of this toxicant.

Although carcinogenicity and reproductive toxicity are pos-
sible outcomes of exposure, ACR-induced neurotoxicity has
documented and, consequently, immediate implications for
human health. Moreover, our understanding of ACR neuropathy
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and the underlying pathophysiological processes is relatively
advanced due to more than 40 years of neuropathological
characterization and abundant research investigating sites and
mechanisms of action (32–36). This review will therefore discuss
possible molecular pathophysiological processes that mediate
ACR neurotoxicity. The focus will be on evidence that the nerve
terminal is a primary site of ACR action and that inhibition of
neurotransmission mediates the development of neurological
deficits. At the mechanistic level, we will consider recent
proteomic, neurochemical, and kinetic data, which suggest that
ACR inhibits neurotransmission by disrupting presynaptic nitric
oxide (NO) signaling. As will be discussed, the molecular
mechanism of ACR-induced nerve-terminal damage has sub-
stantial implications for environmentally derived neurotoxicity
and for the pathogenesis of Alzheimer’s disease and other
neurodegenerative conditions.

ACR-INDUCED NEUROLOGICAL DEFECTS AND
NERVE-TERMINAL DAMAGE

The neurotoxicity of ACR has been extensively studied with
respect to mammalian species including mice, rats, guinea pigs,
cats, dogs, and monkeys at daily dose rates varying from 0.1 to
50 mg/kg/day (32, 33, 38). The overt signs of neurotoxicity are
consistent across species, although the rodent appears to be the
least sensitive species. In well-described rodent models, ACR
intoxication at 5-50 mg/kg/day produces a triad of neurological
deficits, that is, hind-limb foot splay, ataxia (open-field gait
abnormalities), and skeletal muscle weakness such as decreased
fore- and hind-limb grip strength (11, 13, 39–43). Experimental
ACR intoxication is also associated with neurogenic autonomic
dysfunction, for example, urinary retention, baroreceptor dys-
function, and impaired vasomotor control (44–47). The neuro-
toxicity of ACR is cumulative, and therefore neurological
deficits develop progressively, at a rate determined by the daily
dose; that is, higher ACR dose rates (30-50 mg/kg/day) produce
severe neurotoxicity over a relatively short exposure duration
(10-30 days), whereas lower dose rates (1-20 mg/kg/day)
cause comparable neurotoxicity with significantly longer onset
times [60 days-2 years (11–13, 40–42)]. A current point of
ambiguity is whether this neurotoxicity is mediated by the parent
chemical or by an active metabolite. Following exposure, ACR
can be oxidized to an epoxide metabolite, glycidamide, presum-
ably by the activity of cytochrome P450 2E1 (48). The results
of one study (49) suggested that glycidamide played a causal
role in producing the neurological deficits and axonal degenera-
tion induced by ACR intoxication of rats. In contrast, other
research has indicated that the parent compound (ACR) and
not glycidamide is primarily responsible for induction of
neurotoxicity (50–54). Additional research is clearly needed to
define the role of glycidamide in the neurotoxic actions of ACR.

Early morphologic studies (55–64) revealed that low-dose
subchronic induction of ACR neurotoxicity was associated with

nerve damage in both the central and peripheral nervous systems
(33). The morphological hallmark of this toxic neuropathy was
considered to be distal preterminal axon swellings of the longest
myelinated fibers. These swellings contained an abundance of
neurofilaments, tubulovesicular profiles, and effete, probably
degenerating, mitochondria (59, 60, 64). As exposure continued,
progressive retrograde degeneration of these distal axon regions
ensued with preservation of more proximal segments (4). On
the basis of this pattern of neuropathological expression, Spencer
and Schaumburg proposed that large-diameter axons in the CNS
and PNS were most sensitive to the development of simulta-
neous, multifocal paranodal axon swellings in distal regions and
that these swellings served as initiation points for subsequent
degeneration. The characteristic spatiotemporal pattern of axon
damage led to the classification of ACR neuropathy as a
“central-peripheral distal axonopathy” (65). However, other
morphological evidence generated during the past 30 years has
indicated that early nerve-terminal damage might be importantly
involved in the pathophysiological process leading to ACR
neurotoxicity (14, 59, 66–68). Electrophysiological studies by
Goldstein and Lowndes (69–75) showed that neurotransmission
was impaired at spinal cord primary afferent nerve terminals
as an early consequence of ACR intoxication of cats. Defective
neurotransmission was also found at peripheral neuromuscular
junctions and at autonomic synapses of ACR-intoxicated
laboratory animals (44, 68, 76).

On the basis of evidence of early structural and functional
damage, LoPachin and colleagues (33) suggested that nerve
terminals were the primary site of ACR action and that synaptic
dysfunction and subsequent degeneration were necessary and
sufficient steps for production of ACR neurotoxicity. Corrobora-
tive research using the de Olmos silver stain method to detect
neurodegeneration has shown that higher dose rate intoxication
in rats (50 mg/kg/day) produced a selective terminalopathy
characterized by very early, widespread nerve-terminal degen-
eration in gray matter regions of the spinal cord, brainstem,
midbrain, and forebrain in the CNS (77–79). Intoxication of
rats at a lower dose rate (21 mg/kg/day) caused initial nerve-
terminal degeneration in PNS and CNS, which was followed
by axon degeneration (80). Thus, regardless of dose rate, ACR
caused initial presynaptic damage, which suggested that the
nerve terminal was a primary site of action. In contrast, the dose-
rate-dependent expression of axon degeneration indicated
that this effect was not a significant neurotoxicological
event (33, 38, 81). Nerve-terminal damage induced by ACR
might be due to either a direct or an indirect effect. Thus, it is
possible that deficient cell body synthesis and/or reduced
delivery of presynaptic components causes secondary nerve-
terminal damage (32, 37, 82). However, ACR does not affect
perikaryal protein synthesis (83–85), and the morphological
reorganization reported in nerve cell bodies (e.g., dorsal root
ganglion neurons) of ACR-intoxicated animals appears to be a
reparative reaction to axon/nerve-terminal damage and not a
direct neuropathogenic effect (86–89). Although defective
kinesin-based fast anterograde transport (FAT) has been studied
as a mechanism of ACR-induced axon degeneration (37), other
evidence indicates that such an effect does not play an important
pathophysiological role (51, 90–94). Alternatively, nerve-
terminal toxicity induced by ACR could develop secondary to
an energy deficit (35, 95). However, it has been found that ACR
exposure does not alter either anaerobic or aerobic energy
production in central and peripheral nervous tissues (96–99).
Together, these data suggest that, rather than being a secondary
phenomenon, nerve-terminal damage is due to a direct effect

Table 1. ACR Exposure Parameters and Benchmark Dose Rates

average dietary intake (U.S.) ) 0.4 µg/kg/day
contribution from smoking ) 1.1-2.3 µg/cigarette
average occupational exposure level (worldwide) ) 30 µg/kg/day
reference dose (RfD) ) 0.20 µg/kg/daya

NOAELb ) 200 µg/kg/day
LOAELc ) 1000 µg/kg/day

a Established by the EPA in 1988. b No observed adverse effect level based
on peripheral nerve damage in rats (39). c Lowest observed adverse effect level
in rats (39).
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of ACR. This possibility is supported by results from recent
studies showing that direct, in vitro exposure of isolated brain
synaptosomes to ACR decreased transmitter release (100, 101).
The in vivo significance of this effect has been demonstrated
by the observation that brain synaptosomes prepared from ACR-
intoxicated rats were also release incompetent (100).

MOLECULAR MECHANISM OF ACR-INDUCED
NERVE-TERMINAL DAMAGE

In developing a mechanistic theory for the presynaptic toxicity
of ACR, we considered the well-documented adduct chemistry
of this toxicant. ACR is an R,�-unsaturated carbonyl derivative
and is, therefore, classified as a type-2 alkene (101). Many
chemicals of this class are characterized by a conjugated system
formed when the electron-withdrawing carbonyl group is linked
to an alkene (Figure 1A). Due to the polarizable nature of the
mobile π electrons (Figure 1B), these systems are able to
undergo Michael-type conjugate additions with nucleophiles.
According to the Molecular Orbital Theory, R,�-unsaturated
carbonyl compounds are considered to be soft electrophiles that
will react most favorably with soft nucleophiles (102) such as
the sulfhydryl groups on cysteine residues in proteins (103).
Such interactions in biological systems have been examined
quantitatively (104, 105) through the use of quantum mechanical
computations. In the case of ACR and the related compounds
shown in Figure 1A, it has been shown that computed electronic
properties (e.g., softness, electrophilic index, chemical potential)
are well correlated to their kinetic constants for adduct formation
and their toxicity in sulfhydryl-rich biological systems such as
brain synaptosomes (105, 106). Because the function of many
proteins that participate in neurotransmission and other critical
processes is determined by the redox state of sulfhydryl groups
on specific cysteine residues, we proposed that ACR alkylation
of essential thiols impaired the activity of presynaptic pro-
teins (101, 105, 106). Our research initially focused on N-
ethylmaleimide (NEM) sensitive factor (NSF) as a target for

ACR. Neurotransmitter release involves the fusion of synaptic
vesicles with presynaptic membranes and the subsequent
formation of a transmembrane pore (103). Membrane fusion is
mediated by transient assembly of a soluble NSF attachment
protein receptors (SNARE) core complex through the interac-
tions of three presynaptic proteins: SNAP-25, syntaxin, and
synaptobrevin. Disassembly of the fusion complex is the rate-
limiting step of transmitter release and is mediated by the
ATPase activity of NSF. As the name implies, NSF is inhibited
by NEM and other sulfhydryl alkylating chemicals through
adduction of Cys 264. This cysteine residue is located within
domain I of the nucleotide-binding consensus sequence and is
critically involved in ATP binding/hydrolysis (107–109). Our
proteomic studies have demonstrated that ACR also formed
adducts with this cysteine residue and that the resulting
inhibition of NSF activity played a significant role in the
reduction of neurotransmitter release that accompanied intoxica-
tion of rats (110, 111).

During subsequent investigations to establish neurotoxico-
logical specificity of this NSF effect, it was found that ACR
also inhibited other presynaptic processes, for example, neu-
rotransmitter re-uptake and vesicular storage, by forming adducts
with cysteine residues on respective proteins: the dopamine
transporter, Cys 342, and v-ATPase, Cys 254 (100, 111, 112).
This suggested that ACR influenced diverse nerve-terminal
functions. Moreover, in vitro structure-toxicity studies dem-
onstrated that other R,�-unsaturated carbonyls (e.g., acrolein,
MVK, HNE) caused a similar broad-based presynaptic toxicity
involving sulfhydryl adduction (101). These findings were
consistent with previous studies, which showed that type-2
alkenes such as acrolein, acrylonitrile, and 4-hydroxy-2-nonenal
(HNE) produced sulfhydryl-based neurotoxicity in vivo and in
vitro (113–118). On the basis of these data, we proposed that
ACR was a member of a large class of chemicals, the conjugated
type-2 alkenes, that produced neurotoxicity via a common
molecular mechanism involving cysteine adduct formation and
nerve-terminal dysfunction (101). However, this hypothesis
lacked molecular target specificity, because most proteins
contain cysteine residues. This issue was addressed in a recent
study, which showed that the highly nucleophilic sulfhydryl
thiolate (RS-1) state was the preferred type-2 alkene target (105).
In biological systems at physiological pH (∼7.2), the thiolate
concentration is low (∼10%) because the average pKa of
cysteine sulfhydryl groups is 8.5. Nonetheless, thiolates are more
prevalent than predicted due to the existence of relatively low
pKa sulfhydryl groups on cysteine residues located within highly
specialized amino acid sequences known as catalytic triads; for
example, Cys 525 of glyceraldehyde-3-phosphate dehydrogenase
is located within a catalytic triad and has a pKa of 5.5. The
thiolate state is formed by proton shuttling between flanking
basic amino acid residues, such as histidine, arginine, or lysine,
and their acidic counterparts aspartate and glutamate (119, 120).
Catalytic triads are found within the active sites of many proteins
(e.g., NSF, GAPDH, and vacuolar-ATPase) and play a critical
role in modulating their function. Thus, cysteine thiolates of
catalytic triads represent specific, mechanistically relevant targets
for electrophilic neurotoxicants because these sulfhydryls are
highly nucleophilic and are functionally critical. Our finding
that ACR forms adducts with Cys 264 of NSF (see above) is,
therefore, significant because this residue is located within the
catalytic triad of the nucleotide-binding site of domain I and is
responsible for modulating the ATPase activity of this enzyme.
Furthermore, type-2 alkene adduction of Cys 264 inhibits NSF
activity, which secondarily disrupts the synaptic vesicle cycle

Figure 1. (A) Line structures for several conjugated R,�-unsaturated
carbonyl derivatives of the type-2 alkene class. Numbers in paraentheses
represent rank order of thiol reactivity (101, 106). ACR, acrylamide; MA,
methyl acrylate; MVK, methylvinyl ketone; ACL, acrolein; HNE, 4-hydroxy-
2-nonenal; NEM, N-ethylmaleimide. (B) Electron mobility (formation of a
C3 carbocation) in the conjugated R,�-unsaturated carbonyl structure of
a type-2 alkene.
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and other presynaptic membrane fusion processes (107–111).
In contrast, data from several in vitro studies have suggested
that neurotoxicity may be mediated by cellular oxidative stress
following type-2 alkene depletion of glutathione (121–123).
However, it has recently been shown (112) that ACR intoxica-
tion does not affect CNS neuronal redox state in whole animal
models (see also, ref 124). Furthermore, numerous studies have
indicated that the formation of protein adducts (and not GSH
depletion) is the primary pathogenic step in type-2 alkene
toxicity (125–129). These data strongly suggest that ACR, and
other type-2 alkenes, produce neurotoxicity by forming adducts
with sulfhydryl thiolates in cysteine catalytic triads.

The cysteine thiolate residues of catalytic triads are acceptors
for nitric oxide (NO) signaling and, predictably, most of the
protein targets of ACR (e.g., NSF, DA transporter, and
v-ATPase) are also recognized effectors for NO signal-
ing (101, 110, 111). Therefore, it seems likely that the type-2
alkenes produce neurotoxicity by interfering with this pathway.
NO is a biological electrophile that reversibly adducts thiolates
(S-nitrosylation) and thereby regulates the activities of many
nerve-terminal proteins and their respective pathways (120, 130).
It was originally thought that NO influenced cellular processes
through stimulation of soluble guanylyl cyclase (131). However,
more recent research indicates that NO rapidly modulates many
processes by forming reversible adducts with thiolates (S-
nitrosylation) of catalytic triads. S-Nitrosylation, therefore,
represents a redox-based signaling mechanism that regulates
neurotransmission in a fashion similar to the posttranslational
modifications induced by protein phosphorylation (132). The
specificity and functional independence of NO-mediated actions
is a product of signaling modules that act as neuronal micro-
processors. For example, stimulus-evoked generation of NO via
the neuronal synthetic enzyme, nNOS, occurs in proximity to
the effector element, the thiolate of a corresponding catalytic
triad. The resulting oxidation of the thiolate by NO specifically
modulates protein function (e.g., the NMDA receptor complex;
see ref 133). Although controversy exists regarding the effects
of NO signaling at the nerve terminal, the weight of evidence
suggests a reduction in synaptic strength through binary
(“on-off”) regulation of many presynaptic processes; that is,
NO inhibits synaptic vesicle membrane fusion and decreases
both membrane neurotransmitter uptake and vesicular storage
(134). Our studies suggest that ACR and the type-2 alkenes
mimic these neurophysiological effects of NO signal-
ing (100, 101, 112). Therefore, oxidation of thiolate anionic
sites in protein catalytic triads by either reversible S-nitrosylation
(endogenous NO) or irreversible alkylation (exogenous ACR)
produces similar synaptic effects that differ with respect to
duration of effect and outcomesneuromodulation versus neu-
rotoxicity, respectively. Because ACR and other type-2 alkenes
form irreversible adducts with NO-targeted thiolates, we
hypothesize that NO signaling is blocked and that the loss of
reversible, spatially precise neuromodulation produces nerve-
terminal toxicity.

SELECTIVE VULNERABILITY OF NERVE TERMINALS TO
ELECTROPHILIC ATTACK

NO modulation of protein catalytic triads is a generic cellular,
which seems incompatible with a proposed mechanism of
selective nerve-terminal damage. However, several unique
anatomical and functional characteristics predispose this neu-
ronal region to electrophilic attack (reviewed in refs 103 and
106). Thus, it is notable that presynaptic function is regulated
extensively by NO signaling. Electrophile-induced disruption

of NO modulation could, therefore, have broad functional
consequences for neurotransmission. Because the nerve terminal
is anatomically separated from the cell body, it is devoid of
transcriptional or translational capacity. As a consequence, it
lacks the ability to initiate transcriptionally based reparative and
protective responses; for example, the nerve terminal cannot
mount a protective response to an electrophile mediated by the
NEPP-Keap1/Nrf2 pathway. Furthermore, because nerve ter-
minals cannot manufacture proteins, cell body synthesis and
subsequent anterograde axonal transport maintain the presynaptic
proteome. As a conservation mechanism, the turnover of nerve-
terminal proteins is slow relative to that of proteins in other
nerve regions or cell types (103, 106, 111). Consequently, when
such proteins are adducted and rendered dysfunctional, they are
replaced slowly. With continued toxicant exposure, the dys-
functional protein pool grows and the related cellular pathways
are progressively disabled. Given this proteome toxicodynamic,
cumulative toxicity with parallel accumulation of protein adducts
in target cells is the predicted outcome. Experimentally, both
cumulative neurotoxicity and consonant adduct accumulation
have been demonstrated (13, 110, 111). In contrast, adducted,
dysfunctional proteins with short half-lives will not accumulate
(i.e., they are rapidly replaced) and, consequently, will have
minimal toxic impact.

TOXICOLOGICAL CONSEQUENCES OF TYPE-2 ALKENE
ENVIRONMENTAL EXPOUSRE

As stated above, ACR is a member of a large class of
structurally similar toxic chemicals, the type-2 alkenes (Figure
1A). These chemicals are soft electrophiles that produce toxicity
through a common molecular mechanism involving the forma-
tion of adducts with soft nucleophilic cysteine residues.
Conjugated R,�-unsaturated carbonyl and acrylic acid type-2
alkenes have extensive commercial and industrial applications,
and they are well-documented environmental pollutants and food
contaminants (1, 135–144). Consequently, humans are perva-
sively exposed to chemicals in this class. However, although
neurotoxicity is a clearly defined outcome in ACR-exposed
human cohorts (3, 4, 55), systemic exposure to acrolein, MVK,
or other type-2 alkenes is primarily associated with respiratory,
hepatic, or renal toxicity (Table 2) (136, 145–147). This
toxicological diversity is not related to differences in molecular
mechanisms among these chemicals (101, 105, 139, 140, 148),
but is instead due to relative differences in electrophilic reactivity
and the resulting impact on tissue distribution (149–152).
Acrolein, NEM, and MVK are highly electrophilic and,
therefore, rapidly form adducts with sulfhydryl thiolate groups.
Following systemic intoxication with reactive type-2 alkenes,
the rapid formation of protein adducts essentially limits tissue
distribution (153) and, as a consequence, the resulting toxic
manifestations are determined by the site of absorption; for
example, inhalation of acrolein produces pulmonary toxicity,
whereas systemic administration is associated with hepatic and
vascular toxicity (135, 154–156). In contrast, ACR is a weak
water-soluble electrophile that forms thiolate adducts slowly.
It is, therefore, less susceptible to the limiting influence of
systemic “adduct buffering” and has a correspondingly larger
volume of distribution that encompasses the CNS (50, 157–159).
Thus, although it might seem counterintuitive, the greater threat
of environmentally derived neurotoxicity comes from exposure
to weaker electrophiles (e.g., ACR, methyl acrylate), whereas
environmental exposure to softer, more reactive, electrophiles
(e.g., acrolein) is likely to produce systemic toxicity (i.e.,
hepatotoxicity).
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RELEVANCE OF ENDOGENOUS TYPE-2 ALKENE
PRODUCTION TO HUMAN DISEASES

In addition to the toxicity of environmental exposure, a large
database suggests that endogenous generation of type-2 alkenes
plays a major pathogenic role in acute neurotrauma (e.g., spinal
cord trauma) and certain chronic neurodegenerative diseases
(e.g., Alzheimer’s disease). The neuronal injuries associated with
these conditions share a common pathophysiological cascade
that involves oxidative stress and lipid peroxidation (160–162).
The free radical driven peroxidation of polyunsaturated fatty
acids damages cellular membranes and generates neurotoxic
R,�-unsaturated carbonyl derivatives such as acrolein and
HNE (162–164). Accordingly, evidence from animal models
and human cohorts suggests that liberation of these reactive R,�-
unsaturated aldehydes and subsequent formation of protein
adducts mediate the neuronal injury induced by stroke or acute
spinal cord trauma (165–168). A relatively large database
suggests that Alzheimer’s disease (AD) is characterized by an
oxidative cascade and damage to nerve terminals (162, 169–173).
In AD, presynaptic toxicity antedates frank neurodegeneration
and is, therefore, considered to be a primary component of the
neuropathogenic process (169, 171, 174, 175). The mechanism
of AD synaptotoxicity has not been elucidated (174–178),
although numerous studies have reported elevated levels of
HNE, acrolein, and their respective protein adducts in relevant
brain regions (e.g., amygdala and hippocampus) of AD patients
and transgenic animal models (170, 179–186). Our research
suggests a causal relationship between presynaptic dysfunction
and the liberation of type-2 alkenes in the AD brain; that is,
acrolein and HNE form irreversible adducts with NO thiolate
acceptors on presynaptic proteins, and the resulting loss of NO
regulation causes synaptic dysfunction and eventual degenera-
tion. Thus, the memory and cognitive deficits of AD might
develop as a consequence of regional presynaptic type-2 alkene
toxicity. Furthermore, because type-2 alkenes share a common
mechanism of presynaptic toxicity, it is possible that environ-
mental exposure to weak electrophilic members of this chemical
class (e.g., ACR in food or occupational exposure to MA)
accelerates the nerve-terminal damage induced by endogenous
acrolein/HNE. Finally, the pathophysiological relevance of

acrolein and HNE extends well beyond neurotrauma and
neurodegeneration, because these type-2 alkenes appear to be
importantly involved in the pathogenesis of many systemic
diseases also associated with lipid peroxidation, for example,
diabetes, atherosclerosis, pulmonary diseases, and inflammatory
conditions (135, 187).

SUMMARY

ACR is a type-2 alkene and has demonstrable neurotoxic
effects in both laboratory animals and humans that stem from
its chemical behavior as a soft electrophilic R,�-unsaturated
carbonyl compound. Other type-2 alkenes (Figure 1A) react in
biochemical systems via a common mechanism but might or
might not be neurotoxic depending upon the extent of their
ability to behave as electrophiles. Evidence suggests that the
primary site of ACR action is the nerve terminal and that
inhibition of neurotransmission mediates the development of
neurological deficits. At the mechanistic level, recent proteomic,
neurochemical, and kinetic data suggest that ACR inhibits
neurotransmission by disrupting presynaptic NO signaling. The
proposed molecular mechanism of ACR-induced nerve-terminal
damage has substantial implications for environmentally derived
neurotoxicity and for the pathogenesis of Alzheimer’s disease
and other neurodegenerative conditions, because the resulting
loss of NO regulation causes synaptic dysfunction and eventual
degeneration.
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